<table>
<thead>
<tr>
<th>Project Number</th>
<th>Project Title</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>No.</th>
<th>Survey</th>
<th>Notebook</th>
<th>Display Board</th>
<th>Scientific Method</th>
<th>Complexity/Scientific Maturity</th>
<th>Creativity</th>
<th>Understanding the Science</th>
<th>Total Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

* Sweepstake Recommendation --
Mark ONLY if You're Sure.
1. Interview each exhibitor individually.
2. Make team decisions for all awards.
Note: Give as many or as few of each award as your team deems warranted.
3. Team captains should turn in awards card to the Information Center.

REMEMBER
Reward the best. Encourage the rest!

Notebook should be neat, well-written, organized and thorough. It should include an abstract or summary, purpose, hypothesis, review of pertinent literature, procedures, data tables with graphs and analysis (high school statistics), conclusions, and bibliography. Original data, observations, design calculations, notes, or sketches are included in the appendix or a separate notebook.

Display board should be neat, organized, and pleasing to the eye; it should guide a reader to a timely understanding of the whole project. It should logically display the title, statement of the problem, hypothesis, procedures or (ENGINEERING) design and construction tasks, data tables, graphs, and conclusions. Posting of photos, captions, flow charts, and other pertinent visual aids that add to clarity.

Project employs scientific procedures in examining a clearly defined problem. It includes controlled experimenting, orderly and logical recording and analysis of data, and the formulation of logical conclusions (SCIENTIFIC THOUGHT). OR The project has a clear objective relevant to the needs of potential users; products or processes have been tested and are workable and feasible economically and ecologically (ENGINEERING GOALS).

How complex, deep, and scientifically advanced is the project? What levels of mathematics, science, or engineering were used? How completely do the experiments explore and assess the phenomenon or (ENGINEERING) how completely do they test the design against its goals? How advanced are the data analysis techniques? How insightful, deep, and complete are the conclusions?

Extra consideration should be given to projects that explore a very original problem and/or use a unique approach to data handling and interpretation. How creative or original is the experimental approach to testing the phenomenon? (For ENGINEERING) How creative or original is the solution to the design objective? Extra credit should be given for special skills needed for the construction or use of equipment as well as original observational and design techniques.

To what level does the student understand the scientific mechanism that underlies the phenomena being explored? Have the most important variables been identified? Have they been incorporated into the experiments? Have the variables been isolated to yield valid results? Are the conclusions consistent with the underlying scientific principles? Does the student correctly know WHY the results came out the way they did?