# Achieving STEM Fair Success Presenting your Findings-Basic

Presented by the SLB Outreach Committee

# **SLB Introductions!**

#### Some PSAs:

- Safety screening deadline is Dec 31st!
- Fair updates are on the website
- Follow us on instagram @gsdsef for updates, new workshops, etc
- Follow our youtube channel for workshop replays and safety/screening/applying tutorials

## Agenda

Please hold your questions until the end or ask them in the chat!

- Organizing Results
- Analyzing Data
- Labeling Tables and Graphs
- Examples: Graphing from Tables
- Examples: Calculating averages and percentages
- Breakout rooms: 1. Calculating
   Rates and Percentage Difference. 2.
   Using Excel to create tables and graphs. 3. Using Googlesheets to create tables and graphs

# Putting Together Your Project Report: Components

Today's Focus

Table of contents

Abstract

Introduction and Literature Review

Hypothesis and Purpose

Materials and Methods

Results & Data

Data Analysis & Discussion

Conclusion

Acknowledgements and Bibliography

Appendix (raw data) (varies in size)

#### Findings: Organize the Results



- Raw numerical data goes in tables
- Graphs are made from Tables
- Qualitative data should also be organized (e.g. photos, description)
- All data goes into the appendix
- Don't leave anything out or skip any information. Some of the best science discoveries come from our "mistakes."

#### Findings: Analyzing the Data

- After organizing the data/results in charts, tables, and graphs--
- 2. **Review and Interpret** the Data/Results Do the Math!
- 3. **Summarize/Discuss** the Data/Results



# What makes a good figure or graph?

| (Celsius) | Item 1 | Item 2 | Item 3 | Favorite Subject   | # of students |
|-----------|--------|--------|--------|--------------------|---------------|
| 11.9°     | \$185  | \$511  | \$441  | European History   | 14            |
| 14.2°     | \$215  | \$558  | \$488  | American History   | 48            |
| 15.2°     | \$332  |        |        | World History      | 22            |
| 16.4°     | \$325  |        |        | Calculus           | 41            |
|           |        |        |        | Algebra            | 11            |
| 17.2°     | \$408  |        |        | Geometry           | 32            |
| 18.1°     | \$421  | \$561  | \$491  | Biology            | 45            |
| 18.5°     | \$406  | \$478  | \$408  | Chemistry          | 13            |
| 19.4°     | \$412  | \$302  | \$232  | Physics            | 48            |
| 22.1°     | \$522  | \$288  | \$218  | English Language   | 40            |
| 22.6°     | \$445  | \$410  | \$340  |                    |               |
| 23.4°     | \$544  | \$264  | \$194  | English Literature | 22            |
| 25.1°     | \$614  | \$339  | \$269  | Spanish            | 14            |

Favorite Subject

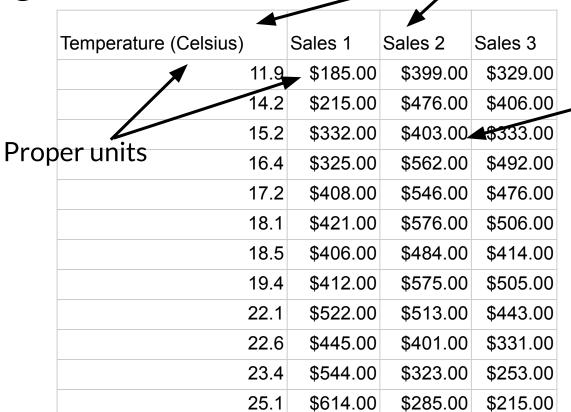
# of students

| Tim | e (hours) | Species 1 | Species 2 |
|-----|-----------|-----------|-----------|
|     | 0         | 0         | 0         |
|     | 2         | 2         | 4         |
|     | 4         | 7         | 18        |
|     | 6         | 12        | 50        |
|     | 8         | 27        | 60        |
|     | 10        | 47        | 65        |
|     | 12        | 98        | 68        |

| Ranking | Percent of people |
|---------|-------------------|
| 0       | 36                |
| 1       | 3                 |
| 2       | 12                |
| 3       | 24                |
| 4       | 18                |

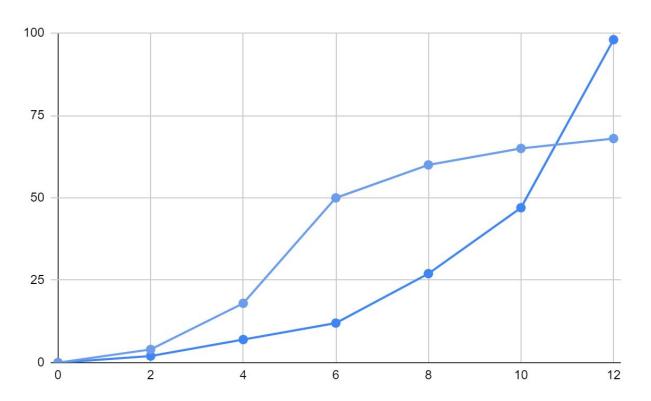
5

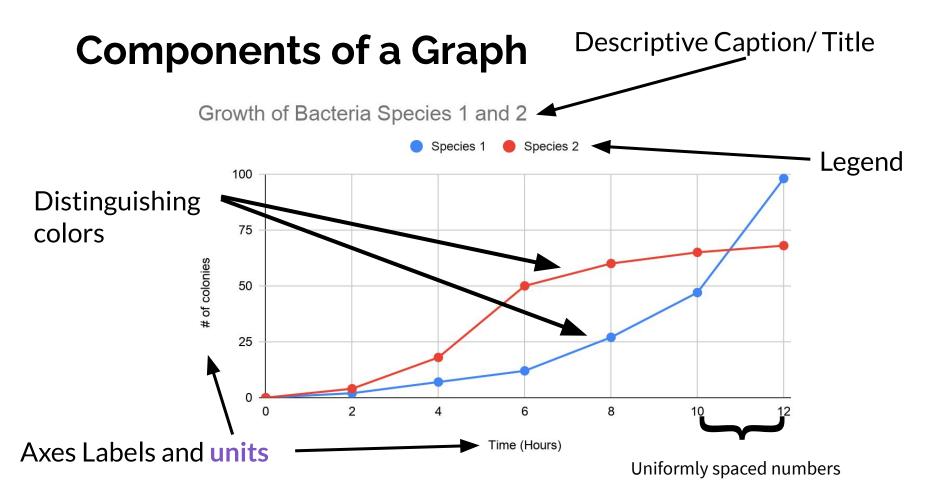
What's the correlation in these numbers?


Temperature

## **Labeling A Table**

| 11.9 | 185.00 | 232.00 | 162.00 |
|------|--------|--------|--------|
| 14.2 | 215.00 | 537.00 | 467.00 |
| 15.2 | 332.00 | 320.00 | 250.00 |
| 16.4 | 325.00 | 218.00 | 148.00 |
| 17.2 | 408.00 | 364.00 | 294.00 |
| 18.1 | 421.00 | 413.00 | 343.00 |
| 18.5 | 406.00 | 462.00 | 392.00 |
| 19.4 | 412.00 | 433.00 | 363.00 |
| 22.1 | 522.00 | 544.00 | 474.00 |
| 22.6 | 445.00 | 593.00 | 523.00 |
| 23.4 | 544.00 | 539.00 | 469.00 |
| 25.1 | 614.00 | 503.00 | 433.00 |


Titles


Labeling a Table



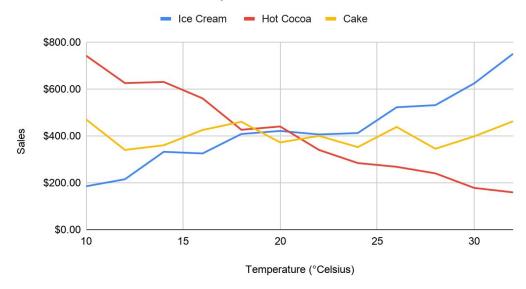
Appropriate decimals

# Labeling a Graph








## **Exercise in Data**

- Data is the bulk of your research
- Multiple trials, organization, and systematic data collection
- Make sure you offer interesting interpretations
- Show that you understand the correlations

### What graphs, and when?

| Temperature (° |           |           |          |
|----------------|-----------|-----------|----------|
| C)             | Ice Cream | Hot Cocoa | Cake     |
| 10             | \$185.00  | \$742.00  | \$470.00 |
| 12             | \$215.00  | \$625.00  | \$340.00 |
| 14             | \$332.00  | \$630.00  | \$360.00 |
| 16             | \$325.00  | \$560.00  | \$425.00 |
| 18             | \$408.00  | \$426.00  | \$460.00 |
| 20             | \$421.00  | \$440.00  | \$372.00 |
| 22             | \$406.00  | \$340.00  | \$400.00 |
| 24             | \$412.00  | \$284.00  | \$352.00 |
| 26             | \$522.00  | \$268.00  | \$438.00 |
| 28             | \$531.00  | \$240.00  | \$345.00 |
| 30             | \$624.00  | \$178.00  | \$398.00 |
| 32             | \$750.00  | \$159.00  | \$462.00 |



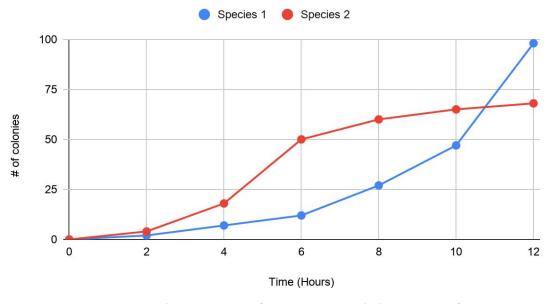


#### Line graphs

• Change over time, or trends

Interpretation example: Summarizing Results

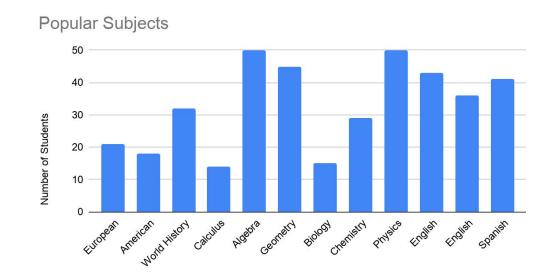
- As temperature rises, Ice Cream sales rise
- As temp. Increases, Hot Cocoa sales decrease
- Cake sales appear to be temperature independent


### What Graphs, and when?

| Time (hours) | Species 1 | Species 2 |
|--------------|-----------|-----------|
| 0            | 0         | 0         |
| 2            | 2         | 4         |
| 4            | 7         | 18        |
| 6            | 12        | 50        |
| 8            | 27        | 60        |
| 10           | 47        | 65        |
| 12           | 98        | 68        |

#### Line Graph

- Discrete points
- Also change over time
- Larger sample size






Interpretation example: Summarizing Results Species 1 has an exponential growth and surpasses species 2's population at 10.5 hrs.

## What Graphs, When?

| Class              | # of students |
|--------------------|---------------|
| European History   | 21            |
| American History   | 18            |
| World History      | 32            |
| Calculus           | 14            |
| Algebra            | 50            |
| Geometry           | 45            |
| Biology            | 15            |
| Chemistry          | 29            |
| Physics            | 50            |
| English Language   | 43            |
| English Literature | 36            |
| Spanish            | 41            |
|                    |               |



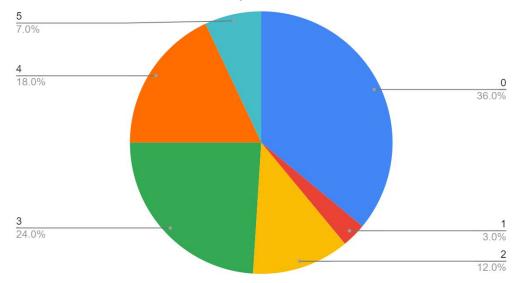
#### Bar Graph

- Frequencies
- Categories and percentages

Subject

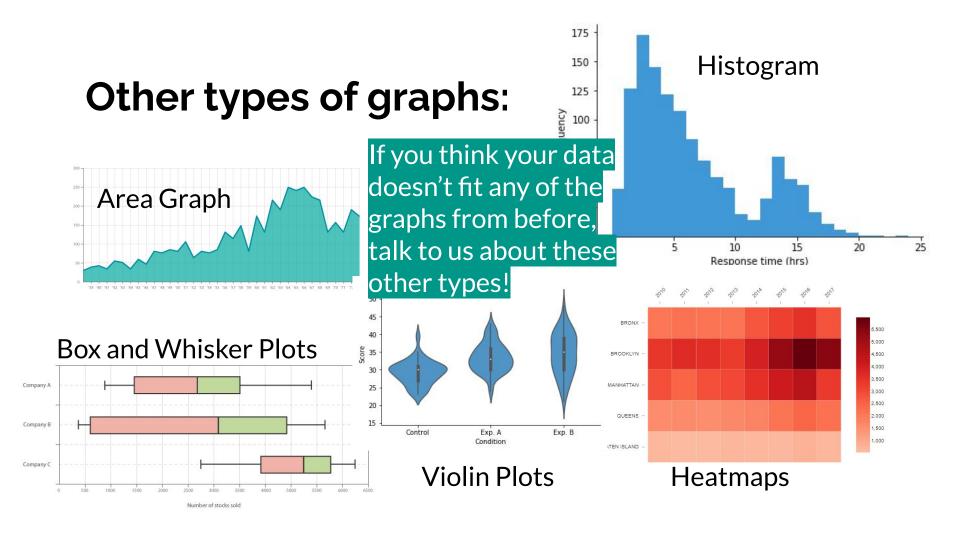
Interpretation example:

Algebra and Physics are the most popular subjects with 50 students, composing about 10% of all students.


## What Graphs, When?

| Ranking | Percent of people |
|---------|-------------------|
| 0       | 36                |
| 1       | 3                 |
| 2       | 12                |
| 3       | 24                |
| 4       | 18                |
| 5       | 7                 |

#### Pie Charts:


- Percentages
- Parts of a whole
- binary (yes/no)





#### Interpretation example:

51% of people ranked the experience a 2 and below. The most frequent response was 0, with 36%.



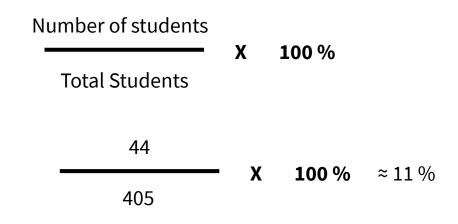
## Ex: Finding an Average

Average # of students per subject? =

| Sum | of values |
|-----|-----------|
|-----|-----------|

Number of values

| Class              | # of students |
|--------------------|---------------|
| European History   | 18            |
| American History   | 21            |
| World History      | 29            |
| Calculus           | 38            |
| Algebra            | 50            |
| Geometry           | 44            |
| Biology            | 39            |
| Chemistry          | 30            |
| Physics            | 44            |
| English Language   | 22            |
| English Literature | 26            |
| Spanish            | 44            |


Interpretation ex:

There was an average of about 34 students per class.

## Finding a Percentage (and when to use it)

Percent of students taking Spanish during this period?

| Class              | # of students |
|--------------------|---------------|
| European History   | 18            |
| American History   | 21            |
| World History      | 29            |
| Calculus           | 38            |
| Algebra            | 50            |
| Geometry           | 44            |
| Biology            | 39            |
| Chemistry          | 30            |
| Physics            | 44            |
| English Language   | 22            |
| English Literature | 26            |
| Spanish            | 44            |



Interpretation ex:

About 11% of all the students at this school were in Spanish class during this period.

# Summarizing, Reviewing, and Interpreting Your Results

You've learned about how to use some excellent data analysis techniques! Now how should you talk about what those graphs mean?

#### **Written Results**

# VS.

#### **Discussion**

- Facts only! No opinions
- Statements based on your data
- Use numbers (mean, median, standard deviations)



- Interpretations of your results!
- Theories/opinions based on your results
- How do your results support your hypothesis?



# Putting Together Your Project Notebook: Findings: Review the Results

- Identify trends or patterns in the data
- Do the Math!!! You may have to make calculations to interpret your findings.
- ke ss.

- Mean
- Median
- Mode
- Standard deviations
- Standard error

- Compare/contrast the trials data.
- Summarize the data as ratios or percentages.

# Putting Together Your Project Notebook: Findings: Review the Results

**Review** your data. Look at the results with a critical eye. Ask yourself these questions:

- Do you have enough data?
- What information does the data you collected tell you?
- What trends or patterns do you see?
- Did you get the results you expected?
- If you have unexpected results, try to figure out why. Was there a problem with your hypothesis? Did you make a mistake?

# Putting Together Your Project Notebook: Findings: Summarize the Results

- Summarize, use objective observations
- without using the word "I" and with no opinions.
- Did something happen that you didn't expect? Make sure to highlight it
- Use your calculations and data to support your claims



# Putting Together Your Project Notebook: Findings: Summarize the Results

Sample statements to use to summarize your results.

- The most/least frequent response was \_ by give #.
- The difference between \_\_\_ and \_\_\_ was --%, -#- unit of measurement.
- The average of \_\_\_\_ was \_\_\_.
- The graph showed \_\_\_.
- The \_\_\_ increased/decreased by \_\_\_ (unit of measurement).
- The average \_\_\_ decreased/increased by \_\_% over the (length of time).
- The difference between \_ and \_\_\_ was \_\_(unit of measurement, %...).
- In comparison, \_\_\_.

Use units of measurements in your statements as appropriate!

# Putting Together Your Project Notebook: Findings: Summarize the Results in Writing--

#### **Example Statements:**

- The most **frequent** response for 30 5<sup>th</sup> grade students was 3 hours per day for TV viewing with an **average** of 2.8 hours.
- The untreated control plates grew on average  $43.25 \pm 29.1$  CFUs. The zinc oxide plates grew on average  $3 \pm 6$  CFUs, and both the copper and silver nitrate groups had 0 CFUs. ...
- Colloidal silver showed an average inhibition zone of 2.13 (Trial 1) and 7.25 (Trial 2) for Staph epi group **compared** to the E. coli group demonstrating an inhibition zone of 1.38 (Trial 1) and 2.0 (Trial 2). Thyme oil group had zones of inhibition **greater** the 20mm in both E.coli and Staph epi. group for both trials.
- The balloons with 1-candle power had an **average** flight time of 14.8 s. Balloons with 2-candle power had flight time average of 13.0 s. The 3-candled balloons had times average flight time of 10.4 s. The number of candles determined the speed at which the balloon rose: three candles were quickest and the single candle balloon the slowest with a **difference** of 4.4 s.

# Thanks for your time!

Next Workshop: Workshop #4 - Abstract, Screening, Slides (Jan. 16, 9-10 am)

Breakout rooms (if you have an updated zoom, please choose your room, otherwise rename yourself with the number, e.g. 3 Jane Doe):

- 1 Tables/Graphing in Microsoft Excel (Jessie & Kelly)
- 2 Tables/Graphing in Google Sheets (Kavya) 4 Life Sciences (Anjana & Margaret)
- **3 Rates and Percentage Diff.** (Ainsley) **5 Physical Sciences** (Jessica)